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Paraventricular thalamic nucleus (PVT) neurons receive hindbrain and hypothalamic inputs, and project to forebrain sites involved in
reward and motivation function. The role of PVT in energy balance and reward control is however understudied. Given that PVT neurons
express glucagon-like peptide-1 receptors (GLP-1R), which are critical to feeding and body weight control, we tested the hypothesis that
PVT GLP-1R signaling contributes to food intake and reward inhibition. To assess the hypothesis, behavioral tests including chow and
high-fat diet intake, meal patterns, conditioned place preference for high-fat food, cue-induced reinstatement of sucrose-seeking, and
motivation to work for sucrose were employed following intra-PVT delivery of either GLP-1R agonist, exendin-4 (Ex4), or GLP-1R
antagonist, exendin-9–39 (Ex9). Anatomical and electrophysiological experiments were conducted to examine the neural connections and
cellular mechanisms of GLP-1R signaling on PVT-to-nucleus accumbens (NAc) projecting neurons. PVT GLP-1R agonism reduced food
intake, food-motivation, and food-seeking, while blocking endogenous PVT GLP-1R signaling increased meal size and food intake. PVT
neurons receive GLP-1 innervation from nucleus tractus solitarius preproglucagon neurons that were activated by food intake; these GLP-1
fibers formed close appositions to putative GLP-1R-expressing PVT cells that project to the NAc. Electrophysiological recordings of
PVT-to-NAc neurons revealed that GLP-1R activation reduced their excitability, mediated in part via suppression of excitatory synaptic
drive. Collectively, these behavioral, electrophysiological and anatomical data illuminate a novel function for PVT GLP-1R signaling in food
intake control and suggest a role for the PVT-to-NAc pathway in mediating the effects of PVT GLP-1R activation.
Neuropsychopharmacology (2017) 42, 2387–2397; doi:10.1038/npp.2017.150; published online 16 August 2017
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INTRODUCTION

Neurons of the paraventricular thalamic nucleus (PVT)
receive neurochemically diverse projections from neurons in
the caudal brainstem (eg, glucagon-like peptide-1 (GLP-1)),
hypothalamus (eg, hypocretin/orexin), and other forebrain
areas (eg, corticotrophin releasing factor from amygdala),
and transmit their efferent outflow to nucleus accumbens
(NAc), bed nucleus of the stria terminalis, central nucleus of
the amygdala and associated cortical regions (Kirouac, 2015).
These homeostatic, visceral, and arousal-related inputs from
hindbrain/hypothalamic neurons and outputs to NAc
neurons associated with motivation and reward function
suggest important roles for PVT neurons in energy balance
control, particularly on feeding behavior. However, to date,
there are insufficient data to adequately evaluate this
suggestion.
In considering a role for PVT neurons in neural control of

feeding behavior, the functional effect of its GLP-1 receptor

(GLP-1R) signaling is unexplored. GLP-1 is a hormone with
anorectic effects that are mediated in part through its
receptors in the brain (Kanoski et al, 2011). GLP-1R-
expressing cells (Cork et al, 2015; Merchenthaler et al, 1999)
and GLP-1 immunopositive fibers are located within the
PVT, which suggests possible GLP-1 innervation from
preproglucagon (PPG) neurons in the caudal nucleus tractus
solitarius (NTS; Gu et al, 2013; Llewellyn-Smith et al, 2011;
Rinaman, 2010). NTS PPG neurons are activated by vagal
afferent stimulation resulting from ingested food (eg, gastric
distension; Kreisler et al, 2014; Vrang et al, 2003),
which in turn promotes GLP-1 release at the projection
targets of PPG neurons, that may include the PVT. On the
basis of these findings, we hypothesized that GLP-1R
signaling in PVT contributes to the inhibitory control of
feeding behaviors.
To address this hypothesis, we assessed the effects of PVT

GLP-1R activation by conducting a series of pharmaco-
behavioral, anatomical, and electrophysiological experi-
ments. Collectively, results obtained support the hypothesis
that PVT GLP-1R signaling reduces food -intake, -seeking,
and -motivation, inhibits PVT output to NAc, and highlights
the PVT-to-NAc projecting neurons as possible targets of
PVT GLP-1R activation.
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MATERIALS AND METHODS

Animals

All procedures conformed to the institutional standards of
the University of Pennsylvania and Rutgers Robert Wood
Johnson Medical School Institutional Animal Care and Use
Committee (IACUC). Adult male Sprague Dawley rats
(250–265 g on arrival, Charles River Laboratories, Wilming-
ton, MA) were individually housed in metal hanging cages
under a 12 h light/12 h dark cycle. C57BL/6J mice (Jackson
Laboratory) were bred in-house, and animals aged 5–8 weeks
were used for electrophysiological analyses. Rats or mice had
ad libitum access to pelleted chow (Purina 5001, St Louis,
MO) and water, unless otherwise stated.
Rats or mice were implanted with cannula directed to 2mm

above either the lateral ventricle (bregma − 0.9 mm, lateral
± 1.6 mm, and ventral − 2.8mm) or PVT (bregma − 2.8mm,
on midline, and ventral − 4.2mm). All experiments measuring
food intake were conducted using within-subjects, counter-
balanced designs, with at least 48 h intervening between
experimental conditions, unless otherwise specified. See
Supplementary Information for drugs and infusion methods.

Chow and High-Fat Diet Intake

Naïve rats maintained on chow (n= 7) or high-fat diet (HFD;
n= 10; 45% kcal/fat, Research Diets, New Brunswick, NJ)
received intra-PVT injections of Veh or Ex4 (12.5 ng, 25 ng,
and 50 ng). Chow and HFD intake (accounting for spillage)
were measured 1, 2, 4, 6, and 24 h post-injection.

Cumulative Chow Intake and Meal Pattern Effects of
PVT GLP-1R Antagonism

Naïve rats (n= 13) were housed in modified hanging wire
cages equipped with an automated food intake measuring
system (DiaLog instruments) that makes continuous measure-
ments of food intake as well as meal parameters including
meal size and meal number (Alhadeff et al, 2014a).
Cumulative chow intake and meal patterns were analyzed
following PVT injections of Veh or Ex9 (5 and 10 μg).

Conditioned Place Preference for HFD

Conditioned place preference (CPP) was performed as
described previously (Alhadeff and Grill, 2014b). Naïve rats
(n= 17) were trained to associate a context with HFD intake
in a CPP apparatus. Rats were injected with Veh or Ex4
(25 ng) to the PVT 4 h prior to test and the amount of time
spent in each compartment of the CPP apparatus was
calculated to determine the percent shift in preference (from
baseline) to the HFD-paired side. See Supplementary
Information for experimental details.

Cue-Induced Reinstatement of Sucrose-Seeking
Behavior

Naïve rats (n= 16) with PVT cannulae were trained to
associate tone and light cues with the delivery of a 45 mg
sucrose pellet (Bio-Serv, Frenchtown, NJ). During reinstate-
ment test day, rats were injected with either Veh or 25 ng Ex4
to the PVT 4 h prior to test and the number of lever presses

emitted was recorded. See Supplementary Information for
experimental details.

Progressive Ratio Responding for Sucrose Reward

To assess food-motivated behaviors, Progressive ratio (PR)
responding for sucrose reward was conducted as previously
described (Alhadeff and Grill, 2014b), in rats (n= 14) that
were previously tested on CPP. On PR test days, rats received
intra-PVT injections of either Veh or Ex4 (25 and 50 ng) and
4 h later tested for their PR responding for sucrose reward.
See Supplementary Information for experimental details.

Pica (Model for Nausea/Malaise in Rodents)

To insure that the intake inhibitory effect of PVT GLP-1R
signaling is not secondary to nausea and malaise in rodents,
pica (ingestion of non-nutritive substance) was assessed by
measuring 24 h kaolin clay intake following intra-PVT delivery
of Veh or Ex4 (50 ng) immediately prior to dark onset.

Characterization of PVT-Projecting NTS PPG Neurons
that are Activated by Food Intake

To examine whether PVT neurons receive monosynaptic
GLP-1 inputs from NTS PPG neurons that are sensitive to
afferent signals driven by food intake, rats with fluorogold
(FG; a retrograde tracer) injected to the PVT were trained to
self-ingest Ensure (1.42 kcal/ml) as previously described (Ong
et al, 2015). Three days post-surgery, rats were fasted for 24 h
and given either ad lib access to Ensure (n= 5) until sated or
no Ensure (n= 2) the next day. Rats were perfused 90min
after Ensure access. Caudal NTS sections were analyzed for
GLP-1, c-Fos immunoreactivity, FG-labeled cells, and their
colocalization using fluorescence microscopy (Nikon 80i; NIS
Elements AR 3.0; see Supplementary Information for retro-
grade tracing and immunohistochemistry methods).

Identification of NAc-Projecting PVT
GLP-1R-Expressing Cells

To identify whether NAc-projecting PVT cells that express
GLP-1R closely appose GLP-1 fibers, rats (n= 2) were
injected with FG to the NAc (lateral ± 1.9 mm, bregma
+1.5 mm, and ventral − 5.5 mm) 4 days before receiving
10 μg/kg (i.p.) fluorescein-labeled Ex4 (FLEx; which binds to
GLP-1R, is internalized into cells and serves as a marker of
GLP-1R-expressing cell (Reiner et al, 2016)). Rats were
perfused 90 min post-injection and PVT sections analyzed
for GLP-1 immunoreactivity, FG-labeled cells, FLEx, and
their colocalization using a Leica SP5 X confocal microscope.

Electrophysiological Recordings in Brain Slices

Brain slice physiology was performed in retrolabeled PVT-to-
NAc projecting neurons as described previously (Pang et al,
2002) with modifications noted in Supplementary Information.

Statistics

Results are shown as mean± SEM. Experiments on food
intake, meal patterns, and food-motivated behaviors were
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conducted in a within-subjects design and data were
analyzed using repeated measures one-way or two-way
ANOVA. When ANOVA identified a significant effect,
Neuman-Keuls test was conducted. Food-seeking behavior
experiments and immunohistochemistry were conducted
between subjects and data were analyzed using Student’s
unpaired t-test. Electrophysiological data were analyzed
using paired t-test (before and after the application of
Ex4 or Ex9). All statistical analyses were conducted using
Statistica software (Statsoft) and statistical significance was
defined as Po0.05.

RESULTS

PVT GLP-1R Agonism Reduced Food Intake
Independent of Malaise; Blocking GLP-1R Signaling
Increased Food Intake and Average Meal Size

There was a significant main effect of Ex4 treatment (chow:
F3,18= 10.9, HFD: F3,30= 5.6; Po0.01), time (chow:
F4,24= 190.2, HFD: F4,40= 122.2; Po0.001) and treatment ×
time interaction (chow: F12,72= 13.5, HFD: F12,120= 9.1;
Po0.001) on chow intake and HFD intake. PVT Ex4
significantly reduced chow intake at 6 h (F3,18= 4.6,
Po0.05) and at 24 h (F3,18= 27.8, Po0.001) and HFD intake
at 6 h (F3,30= 5.9, Po0.01) and 24 h (F3,30= 12.5, Po0.001),
where PVT targeted delivery of 25 and 50 ng Ex4 reduced
chow and HFD intake at 6 h (Po0.05) and 24 h (Po0.01)
and 12.5 ng Ex4 only at 24 h (Po0.05; Figure 1a and b).
Blocking PVT GLP-1R signaling with Ex9 (5 and 10 μg)
increased cumulative chow intake at 3 h (F2,24= 8.3,
Po0.01), 4 h (F2,24= 4.9, Po0.05), and 5 h (F2,24= 4.0,
Po0.05); an effect mediated by an increase in average meal
size at 3 h (F2,24= 3.6, Po0.05), 4 h (F2,24= 4.2, Po0.05), and
5 h (F2,24= 4.2, Po0.05) post-injection and no change in
cumulative meal number (3 h: F2,24= 1.5, P= 0.24, 4 h:
F2,24= 1.6, P= 0.22 and 5 h: F2,24= 2.0, P= 0.16; Figure 1c–e).
While the increased average meal size effect with PVT Ex9
persisted at 12 h (F2,24= 7.2, Po0.01) and 24 h (F2,24= 7.5,
Po0.01; Figure 1d), it was counteracted by a reduction in
cumulative meal number (12 h: F2,24= 3.7, Po0.05; 24 h:
F2,24= 6.2, Po0.01; Figure 1e) resulting in no difference in
cumulative chow intake between treatments (12 h: F2,24= 3.2,
P= 0.06; 24 h: F2,24= 1.3, P= 0.30; Figure 1c).
To determine whether the intake inhibitory effects

observed with PVT Ex4 delivery were secondary to a possible
induction of malaise, pica (the consumption of kaolin clay), a
well-established model for assessing drug-induced malaise
(Takeda et al, 1993), was measured. Kaolin clay consumption
was not different between treatments (Veh 0.1± 0.1 g, Ex4
0.3± 0.2 g; t13= 1.5, P= 0.16), indicating that the intake
inhibitory effects of PVT GLP-1R signaling are independent
of malaise.

PVT GLP-1R Activation Reduced Food-Seeking and
Food-Motivated Behaviors

CPP for HFD and cue-induced reinstatement of sucrose-
seeking were used to assess the effect of PVT Ex4 (25 ng)
delivery on food-seeking behaviors. CPP results showed that,
compared to their baseline preference, Veh-treated rats
increased time spent in the HFD-associated environment

(baseline 301.1± 12.9 s, Test 501.5± 38.8 s). By contrast, PVT
Ex4-treated rats failed to display a preference for the
HFD-paired environment (baseline 372.5± 21.0 s, test
385.4± 78.9 s), indicating that PVT GLP-1R signaling
blocked HFD-seeking behavior (t15= 2.4, Po0.05;
Figure 2a).
Next, we showed that, in the presence of cues, Veh-treated

rats reinstated sucrose-seeking behavior as evidenced by
increased lever presses compared to extinction performance
(t7= 3.4, Po0.05; Figure 2b). PVT Ex4 treatment blocked the
expression of cue-induced reinstatement of sucrose-seeking
where the number of lever presses emitted following Ex4
treatment was significantly lower than Veh-treated rats
(t14= 2.6, Po0.05; Figure 2b). Inactive lever presses during
reinstatement were not different between groups (Veh:
4.8± 2.7, Ex4: 1.1± 0.7; t14= 1.3, P= 0.22).
To determine the effects of PVT GLP-1R signaling on

palatable food-motivated behaviors, rats were tested on PR
responding for sucrose. Compared to Veh-treatment, PVT
Ex4 administration reduced the number of sucrose pellets
earned (F2,26= 5.2, Po0.05) and active lever presses
(F2,26= 6.8, Po0.01; Figure 2c and d), supporting the view
that PVT GLP-1R signaling reduces food-motivated
behaviors.
As PVT Ex4 treatment slightly but significantly reduced

the number of inactive lever presses (F2,26= 4.5, Po0.05;
Figure 2d), a control experiment was conducted to ensure
that PVT Ex4 delivery did not negatively impact on behavior
performance (Supplementary Information). Rats were
trained to lever press on FR5 and FR10 schedules of
reinforcement. As expected, PVT Ex4 significantly reduced
the number of active lever presses (F1,5= 16.4, Po0.01) and
sucrose pellets earned (F1,5= 22.1, Po0.01). Importantly,
when responses under FR5 vs FR10 were compared, similar
to Veh-treated rats, Ex4-treated rats increased lever presses
during FR10 compared to FR5 (t5= 2.7, Po0.05), and
obtained equivalent amounts of sucrose pellets during both
schedules (t5= 0.6, P= 0.59; Supplementary Figure S1A and
B). The increased behavioral output under FR10 schedule of
reinforcement indicates that the reduced inactive lever
presses observed during PR testing in Ex4-treated rats
cannot be explained by impaired lever press performance
from PVT GLP-1R activation and demonstrates that feeding
effects of PVT GLP-1R agonism are not secondary to
behavioral suppression.

PVT Neurons Receive Direct GLP-1 Inputs from Caudal
NTS PPG Neurons that are Activated by Food Intake

Ensure ingestion significantly increased the number of c-Fos-
positive cells in the NTS (No Ensure: 1.1± 0.7 cells, Ensure:
197± 11.6 cells; t5=− 10.1, Po0.001). Analyses of caudal
NTS sections (Bregma − 14.1 to − 14.5) revealed that 22.4%
of GLP-1 cells (red) colocalize with c-Fos (green), 44.1% of
FG-labeled cells (blue) colocalize with c-Fos, 32.2% of GLP-1
cells are FG-labeled, and 11.7% of GLP-1 cells are both
FG-labeled and c-Fos-positive (Supplementary Table S1,
Figure 3a), thus indicating that food intake activates NTS
PPG neurons, PVT-projecting NTS neurons, as well as NTS
PPG neurons that project monosynaptically to PVT.
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PVT GLP-1 Fibers Closely Appose NAc-Projecting
FLEx-Labeled Cells

To identify putative anatomical interactions between
GLP-1R-expressing PVT-to-NAc projecting cells and
GLP-1 axons in the PVT, coronal PVT sections of rats
injected with FLEx were analyzed for FLEx (green puncta),
FG (blue), and GLP-1 immunoreactivity (red). Confocal
analysis revealed close appositions of GLP-1 axons to NAc-
projecting PVT cells that also express FLEx (white;
Figure 3b). The pattern of labeling suggests possible synaptic

contact between GLP-1 axons and GLP-1R-expressing
PVT-to-NAc projecting neurons.

PVT GLP-1R Activation Reduced Excitability of PVT-to-
NAc Projecting Neurons

Whole-cell patch clamp recordings were performed on
mouse brain slices to determine the effects of Ex4 on PVT-
to-NAc projecting neurons identified by retrograde trans-
ported microfluorescent beads (Supplementary Figure S2).
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The impact of Ex4 on spontaneous action potential (AP)
generation in PVT-to-NAc core projecting neurons was first
examined. Ex4 (10 nM) profoundly suppressed AP firing
(Figure 4a and d) within 1 min of Ex4 application (t6= 4.90,
Po0.01). These effects were reversible as spontaneous AP
firing resumed after wash out. To ensure receptor specificity
of Ex4 on PVT GLP-1R activation, we applied the GLP-1R
antagonist, Ex9 and found that Ex9 dose-dependently
blocked the inhibitory effects of Ex4 on AP firing (100 nM
Ex9: t4= 9.97; 1 μM Ex9: t5= 18.99; Po0.01; Figure 4a and c).
We then asked whether synaptic drive plays a role in the
suppression of AP firing in PVT-to-NAc projecting neurons
by GLP-1R activation. APs were recorded in the presence of
synaptic blockers (CNQX 20 μM, APV 50 μM, to block
responses mediated by glutamate receptors; PTX 50 μM, to
block GABAA receptor mediated responses) to block both
excitatory and inhibitory synaptic transmission. Interest-
ingly, Ex4-induced reduction in AP firing persisted in the
presence of synaptic blockers (t5= 3.03, Po0.05; Figure 4b).
However, compared to the effects of Ex4 in the absence of
synaptic blockers, the suppression of AP firing was smaller in
magnitude and was delayed (4–5 min after Ex4 application;
Figure 4b and Supplementary Figure S3). Recordings of
resting membrane potential in the presence of synaptic
blockers revealed hyperpolarization of PVT-to-NAc cells
following Ex4 treatment (−4.27± 1.85 mV), suggesting a
reduction in intrinsic excitability of the postsynaptic cell.

This result suggests that the reduction in AP by Ex4 is
mediated through both synaptic transmission-dependent and
-independent mechanisms. Since the suppression of neuro-
nal activity by GLP-1R activation was also partially mediated
by synaptic inputs, the impact of Ex4 on synaptic release was
assayed directly. Both spontaneous and miniature excitatory
postsynaptic currents (sEPSCs and mEPSCs) were recorded
in PVT-to-NAc core- and PVT-to-NAc shell- projecting
neurons. Application of Ex4 decreased the frequency (core:
t10= 4.7; shell: t11= 5.0; Po0.001) but not amplitude (core:
t10= 1.1, shell: t11= 0.7; P40.3) of sEPSCs in these cells
(Figure 5). Moreover, in the presence of tetrodotoxin,
mEPSCs frequency (core: t10= 3.2, shell: t5= 2.8; Po0.05)
but not amplitude (core: t10= 0.9, shell: t5= 0.9; P40.3) was
also reduced by Ex4. These data suggest a possible
presynaptic effect of GLP-1R signaling on synaptic vesicle
release from nerve terminals. Spontaneous and miniature
inhibitory postsynaptic currents (sIPSCs and mIPSCs) in
PVT-to-NAc projecting neurons were also recorded. Ex4
increased mIPSC amplitude for NAc core projecting cells
only (core: t7=− 3.8, Po0.01; shell: t7=− 1.5, P= 0.18) but
not frequency (core: t7= 1.4, shell: t7= 0.3 P40.2), suggest-
ing that postsynaptic GLP-1R facilitate postsynaptic current
sizes of inhibitory synapses (Supplementary Figure S4).
Quantification of c-Fos-immunopositive cells in the PVT

of Veh or Ex4-treated rats or mice (Supplementary Materials
and methods) revealed no treatment difference in PVT c-Fos
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expression (rats: t7=− 1.5, mice: t5= 1.1, P40.1
Supplementary Figure S5), indicating that PVT GLP-1R
activation did not stimulate neuronal activity.

DISCUSSION

More than a decade ago, Ann Kelley and colleagues proposed
the hypothalamic-thalamic-striatal circuity as a neural
mechanism contributing to food intake control. In the
proposal, the PVT is viewed as a relay center that receives
inputs related to behavioral states (eg, arousal, energy status)
from the hypothalamus to modulate motivational and
feeding behavioral outcomes through outputs to the NAc
(Kelley et al, 2005), an area associated with reward and
motivation function. While several studies had followed up
on Ann Kelley’s idea to demonstrate a role for PVT neurons
on food intake control (Barson et al, 2015; Betley et al, 2013;
Bhatnagar and Dallman, 1999; Choi et al, 2012; Zhang and
van den Pol, 2017), the ascending and descending pathways
mediating the hypothesized food intake effects remain to be
further evaluated. Here, we investigated and provided novel
evidence for a role of GLP-1 inputs from NTS PPG neurons
in mediating a range of feeding effects by PVT neurons.
Results showed that activation of PVT GLP-1R decreased
food intake, food-seeking, and food-motivated behaviors
while blocking PVT GLP-1R increased food intake and meal
size. We also demonstrated that PVT neurons receive
monosynaptic inputs from NTS PPG neurons that are

activated by food intake, thus providing physiological
relevance to the feeding inhibitory effects of PVT GLP-1R
signaling. In addition, electrophysiological results revealed
that PVT GLP-1R signaling reduced excitability of PVT-to-
NAc projecting neurons. Together, data here highlight the
contribution of PVT GLP-1R signaling on food intake and
reward suppression and suggest a role for PVT-to-NAc
pathway in mediating the effects of PVT GLP-1R activation.
The contribution of PVT neurons in reward control was

first described in studies that demonstrated intra-PVT self-
stimulation reward behavior in rodents (Clavier and Gerfen,
1982; Cooper and Taylor, 1967). More recent evidence
indicates a role of PVT neurons in drug-seeking behaviors
(Kirouac, 2015). Given the common neural pathways
mediating the effects of drugs of abuse and natural rewards,
we hypothesized that PVT neurons also participate in the
control of food reward. Using CPP, PR operant responding,
and cue-induced reinstatement paradigms, we provided a
variety of complementary behavioral evidence showing that
PVT Ex4 delivery reduced the motivation to work for food
reward and blocked palatable food-seeking behaviors,
supporting the hypothesis that GLP-1R signaling in PVT
plays a significant role in food reward-driven behaviors.
Further support for PVT’s role in reward function come
from data showing that PVT neurons are activated in
response to palatable food cues (Schiltz et al, 2007) and that
selective activation of PVT-to-NAc neurons that express
glucose transporter 2 (Glut2) increases the motivation to
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work for sucrose (Labouebe et al, 2016). Our findings here
extend the roles of PVT to include food reward control and
specifically highlight a novel contribution of PVT GLP-1R
signaling in mediating these food-motivated and food-
seeking behaviors.
The feeding and reward inhibitory effects of PVT GLP-1R

agonism reported here expand the anatomical distribution
GLP-1R-expressing nuclei that contribute to food intake and

reward control (Kanoski et al, 2016) to include the PVT.
Further, we provided the first evaluation of the role of central
GLP-1R signaling in blocking cue-induced reinstatement of
palatable food-seeking behavior. This behavior is of clinical
relevance given that brain fMRI responses to food cues
predict future body weight gain (Sun et al, 2015) and that
exposure to palatable foods and food cues increases the
likelihood of reinstatement or relapse to unhealthy eating
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habits (Stanton et al, 1990). Interestingly, the magnitude of
fMRI responses evoked by viewing high-calorie food images
(food cues) was reduced by systemic administration of long
acting GLP-1 analogs (Ten Kulve et al, 2015; van
Bloemendaal et al, 2015) that decreased subsequent food
intake (van Bloemendaal et al, 2015). These data suggest a
role for central GLP-1R signaling in preventing cue-induced
reinstatement of food-seeking behavior, and are consistent

with our findings which highlight the role of PVT GLP-1R
agonism in mediating food intake and food-seeking
behaviors.
We also pursued the hypothesis that PVT projections to

NAc serves as a possible pathway for the effects of PVT
GLP-1R signaling. PVT neurons project densely to the NAc
(Vertes and Hoover, 2008) and studies show that orexin
receptor or electrical stimulation of PVT neurons increases
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NAc dopamine release (Choi et al, 2012; Parsons et al, 2007),
a primary mediator of addiction and reward behaviors.
Furthermore, PVT-to-NAc projecting neurons are activated
by context-induced reinstatement of alcohol-seeking
(Hamlin et al, 2009) and food-paired cues (Haight et al,
2016), and activation of Glut2-expressing PVT-to-NAc
neurons increases food-motivated behaviors (Labouebe
et al, 2016). These findings suggest a role for PVT-to-NAc
projecting neurons in regulating reward-driven behaviors
and thus might play a role in PVT GLP-1R signaling
function. Here, we first identified the anatomical distribution
of PVT GLP-1 fibers and putative GLP-1R-expressing PVT-
to-NAc projecting cells, and then examined the impact of
Ex4 on PVT-to-NAc cell excitability. We found that NTS
GLP-1-positive axon terminals closely appose NAc-
projecting PVT cells that express GLP-1R. Electrophysiolo-
gical analyses of PVT-to-NAc projecting cells revealed that
activation of PVT GLP-1R suppressed AP firing in these
neurons, which suggests an inhibitory effect of Ex4 delivery
to PVT cells. Ex4-induced hyperpolarization and slower
attenuation of Ex4-mediated AP firing suppression in the
presence of synaptic blockers suggests a cellular mechanism
that involves both synaptic transmission and cell autono-
mous effects of GLP-1R activation. Further evaluation of
these results revealed a presynaptic reduction of excitatory
synaptic release and a postsynaptic increase in inhibitory
efficacy by PVT GLP-1R signaling. Overall, these data show
that GLP-1R signaling in PVT-to-NAc projecting neurons
suppressed neuronal excitability. We propose that the
inhibition comes from three sources: (1) presynaptic
suppression of excitatory synaptic release; (2) postsynaptic
facilitation of inhibitory synaptic strength; and (3) synaptic
independent suppression of neuronal excitability.
Given that the majority of PVT-to-NAc projecting

neurons are glutamatergic (Christie et al, 1987), it is possible
that Ex4-induced inhibition of these efferents would reduce
glutamate inputs to NAc. Glutamatergic signaling in NAc
facilitates motivation and hedonic liking of palatable foods
such that blocking NAc metabotropic glutamatergic signal-
ing reduces food intake and food-liking (Richard and
Berridge, 2011). On the other hand, blocking ionotropic
glutamatergic signaling, for example, with AMPA receptor
antagonist, increases food intake (Faure et al, 2008;
Maldonado-Irizarry et al, 1995; Urstadt et al, 2013). Thus
the different functional effects of NAc glutamatergic signal-
ing depends on the type of glutamatergic receptors. Whether
inhibiting PVT-to-NAc cells through PVT GLP-1R signaling
impacts on metabotropic or ionotropic glutamate receptor
signaling is unclear but a recent study by Labouebe et al
(2016) showed that optogenetic activation of Glut2-
expressing PVT-to-NAc neurons increases EPSCs on NAc
cells and that this increase was inhibited by application of a
AMPA receptor antagonist. While it is tempting to postulate
that the motivation stimulatory effects of Glut2 PVT-to-NAc
activation is mediated by activation of AMPA receptor
signaling, it is important to note that AMPA receptor
antagonism causes robust increases in food intake (Faure
et al, 2008; Maldonado-Irizarry et al, 1995; Urstadt et al,
2013). This direction of effect is in contrast to the findings of
Labouebe et al, therefore it may be more likely that NAc
metabotropic glutamate receptors, which stimulation leads to
increases in food intake, are mediating the effects of Glut2

PVT→ NAc activation on the motivation to procure
sucrose. PVT terminals also come in close contact with
NAc dopamine fibers (Pinto et al, 2003) and that blocking
NAc ionotropic glutamate receptors prevents PVT
stimulation-induced NAc dopamine efflux (Parsons et al,
2007). Whether the intake inhibitory effects of PVT Ex4 are
mediated through reduced NAc glutamate and/or dopamine
signaling are important research questions to pursue to
further understand the downstream mechanisms of PVT
GLP-1R signaling on food intake control. While only PVT-
to-NAc neurons were examined here, future studies should
also investigate the contribution of other PVT projecting
targets in mediating the effects of PVT GLP-1R signaling.
Although the inhibitory effect of GLP-1R signaling on

neuronal excitability of PVT-to-NAc projecting neurons
contrasts with reports of excitatory effects of GLP-1R
signaling in other brain regions of mice and rats (eg,
hypothalamus (Acuna-Goycolea and van den Pol, 2004; Cork
et al, 2015), NAc core (Mietlicki-Baase et al, 2014), ventral
tegmental area (VTA) (Mietlicki-Baase et al, 2013), and
parabrachial nucleus (Richard et al, 2014)), it is consistent
with the c-Fos data reported here and with previous reports
on GLP-1R signaling in pancreas-projecting dorsal vagal
motor neurons (Wan et al, 2007), arcuate neuropeptide Y
neurons (Secher et al, 2014), and NAc-projecting VTA
dopamine neurons (Wang et al, 2015). Heterogeneity in the
response to GLP-1R agonism is also reported within a single
neural substrate: PVN GLP-1R activation increases APs in
some neurons but suppresses APs in others (Acuna-
Goycolea and van den Pol, 2004); in NAc core, while
GLP-1R activation reduced EPSC frequency, AP was slightly
increased, suggesting differential pre- and post-synaptic
effects of GLP-1R activation (Mietlicki-Baase et al, 2014).
Furthermore, the classical GLP-1R signaling pathway
observed in pancreatic beta-cells (Goke and Conlon, 1988;
Goke et al, 1989) and NTS (Hayes et al, 2011) that
emphasizes the activation of adenylate cyclase via Gs protein
has been expanded to include coupling of Gi/Go to GLP-1R
shown in other cell systems (Galera et al, 1996; Hallbrink
et al, 2001). These findings therefore suggest that the cellular
mechanisms of GLP-1R signaling may be more heteroge-
neous than previously expected and that its differential
function may be dependent upon neuronal subtype.
In the present study, we only focused on the role of

GLP-1R signaling in the medial PVT (mPVT). Recent studies
are beginning to show differential behavioral effects when
targeting the anterior PVT (aPVT) vs the posterior PVT
(pPVT). For example, orexin and substance P receptor
signaling in the aPVT, but not the pPVT, increases alcohol
intake (Barson et al, 2015, 2017), and activation of aPVT→
NAc pathway, but not the pPVT → NAc circuit, reduces
sucrose-seeking (Do-Monte et al, 2017). Given the close
proximity of mPVT to the aPVT and pPVT, it is possible
that the effects observed in the present study may include the
aPVT and/or pPVT. Whether GLP-1R signaling in the aPVT
vs pPVT results in differential behavioral outcomes remains
to be examined.
In summary, the data presented show that PVT GLP-1R

signaling contributes to the motivational and appetitive
aspects of feeding control. Our findings highlight the PVT as
a novel site of action for GLP-1R signaling on food intake
and reward and show for the first time that NTS PPG
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neurons that project to the PVT are activated by food intake
and that PVT GLP-1R activation reduced excitation of PVT-
to-NAc projecting neurons. Future studies examining the
PVT neural circuits mediating the intake inhibitory effects of
PVT GLP-1R signaling are warranted to provide additional
mechanistic details of the pathways involved in regulating
feeding behaviors and energy homeostasis.
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